Congruences modulo high powers of 2 for Sloane's box stacking function

نویسندگان

  • Øystein J. Rødseth
  • James A. Sellers
چکیده

We are given n boxes, labeled 1, 2, . . . , n. Box i weighs i grams and can support a total weight of i grams. The number of different ways to build a single stack of boxes in which no box will be squashed by the weight of the boxes above it is denoted by f(n). In a 2006 paper, the first author asked for “congruences for f(n) modulo high powers of 2”. In this note, we accomplish this task by proving that, for r ≥ 5 and all n ≥ 0, f(2n)− f(2r−1n) ≡ 0 (mod 2), and that this result is “best possible”. Some additional complementary congruence results are also given.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Congruences for Andrews’ Spt-function

Congruences are found modulo powers of 5, 7 and 13 for Andrews’ smallest parts partition function spt(n). These congruences are reminiscent of Ramanujan’s partition congruences modulo powers of 5, 7 and 11. Recently, Ono proved explicit Ramanujan-type congruences for spt(n) modulo ` for all primes ` ≥ 5 which were conjectured earlier by the author. We extend Ono’s method to handle the powers of...

متن کامل

The overpartition function modulo small powers of 2

In a recent paper, Fortin, Jacob and Mathieu [5] found congruences modulo powers of 2 for the values of the overpartition function p(n) in arithmetic progressions. The moduli for these congruences ranged as high as 64. This note shows that p(n) ≡ 0 (mod 64) for a set of integers of arithmetic density 1.

متن کامل

Congruences for Andrews ’ Spt - Function modulo Powers of 5 , 7 and 13

Abstract. Congruences are found modulo powers of 5, 7 and 13 for Andrews’ smallest parts partition function spt(n). These congruences are reminiscent of Ramanujan’s partition congruences modulo powers of 5, 7 and 11. Recently, Ono proved explicit Ramanujan-type congruences for spt(n) modulo for all primes ≥ 5 which were conjectured earlier by the author. We extend Ono’s method to handle the pow...

متن کامل

The Andrews–Sellers family of partition congruences

In 1994, James Sellers conjectured an infinite family of Ramanujan type congruences for 2-colored Frobenius partitions introduced by George E. Andrews. These congruences arise modulo powers of 5. In 2002 Dennis Eichhorn and Sellers were able to settle the conjecture for powers up to 4. In this article, we prove Sellers' conjecture for all powers of 5. In addition, we discuss why the Andrews-Sel...

متن کامل

`-adic Properties of the Partition Function

Ramanujan’s famous partition congruences modulo powers of 5, 7, and 11 imply that certain sequences of partition generating functions tend `-adically to 0. Although these congruences have inspired research in many directions, little is known about the `-adic behavior of these sequences for primes ` ≥ 13. We show that these sequences are governed by “fractal” behavior. Modulo any power of a prim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Australasian J. Combinatorics

دوره 44  شماره 

صفحات  -

تاریخ انتشار 2009